organic compounds

2365 reflections with  $I > 2\sigma(I)$ 

H-atom parameters not refined

 $0.30 \times 0.25 \times 0.22 \text{ mm}$ 

1 standard reflections

200 parameters

 $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^-$ 

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ 

frequency: 30 min

intensity decay: none

T = 294 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 5,7,9,10-Tetrahydro-5 $\beta$ ,10 $\beta$ -methano-3a $\alpha$ ,8a $\alpha$ -methylpropenocycloocta-[1,2-c:5,6-c']dipyrazole-3,8(2*H*,4*H*)dione monohydrate

## Djamal Djaidi, Roger Bishop, Donald C. Craig and Marcia L. Scudder\*

School of Chemistry, University of New South Wales, Sydney, Australia 2052 Correspondence e-mail: m.scudder@unsw.edu.au

Received 5 May 2008; accepted 7 May 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.090; data-to-parameter ratio = 11.8.

The racemic title compound,  $C_{15}H_{16}N_4O_2 \cdot H_2O$ , crystallizes as a hydrogen-bonded layer structure incorporating the solvent water molecules. Within the layers, there are three distinct hydrogen-bonding motifs which can be classified as  $R_2^2(8)$ ,  $R_4^2(8)$  and  $R_4^4(12)$ .

#### **Related literature**

For related literature, see: Chan *et al.* (2008); Yue *et al.* (1997, 2000, 2007). For hydrogen-bonding analysis, see: Etter (1990).



#### **Experimental**

Crystal data

| $C_{15}H_{16}N_4O_2 \cdot H_2O$ | c = 14.812 (2) Å                |
|---------------------------------|---------------------------------|
| $M_r = 302.3$                   | $\alpha = 85.412 \ (9)^{\circ}$ |
| Triclinic, $P\overline{1}$      | $\beta = 88.369 \ (8)^{\circ}$  |
| a = 6.478 (1) Å                 | $\gamma = 67.089 (11)^{\circ}$  |
| b = 8.157 (1) Å                 | V = 718.6 (2) Å                 |

Z = 2Cu K $\alpha$  radiation  $\mu = 0.82 \text{ mm}^{-1}$ 

#### Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: none 2695 measured reflections 2695 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$  $wR(F^2) = 0.089$ S = 1.642357 reflections

Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                            | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$         | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------|--------------|-------------------------|----------------------|--------------------------------------|
| $N2 - HN2 \cdots OW^{i}$                    | 1.00         | 1.83                    | 2.763 (3)            | 154                                  |
| $W = H/W \cdots O2$<br>$W = H1OW \cdots O1$ | 1.00         | 2.00<br>1.85            | 2.838(2)<br>2.844(2) | 143<br>169                           |
| $OW - H2OW \cdots O1^{m}$                   | 1.00         | 1.81                    | 2.796 (2)            | 169                                  |
| -x, -v + 2, -z + 1. (1)                     | -x + 1, -y - | +2, -2 + 1,             | (ii) $-x + 1, -x$    | y, -z, (III)                         |

Data collection: *CAD-4* (Schagen *et al.*, 1989); cell refinement: *CAD-4*; data reduction: local program; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *RAELS* (Rae, 2000); molecular graphics: *ORTEPII* (Johnson, 1976) and *CrystalMaker* (CrystalMaker Software, 2005); software used to prepare material for publication: local programs.

This research was supported by the Australian Research Council.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2269).

#### References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Chan, I. Y. H., Bishop, R., Craig, D. C., Scudder, M. L. & Yue, W. (2008). Acta Cryst. E64, 0841.
- CrystalMaker Software (2005). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. www.CrystalMaker.co.uk.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rae, A. D. (2000). RAELS. Australian National University, Canberra.
- Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.
- Yue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2000). Tetrahedron, 56, 6667–6673.
- Yue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2007). Acta Cryst. E63, 04689.
- Yue, W., Bishop, R., Scudder, M. L. & Craig, D. C. (1997). J. Chem. Soc., Perkin Trans. 1, pp. 2937–2946.

Acta Cryst. (2008). E64, o1055 [doi:10.1107/S1600536808013512]

# 5,7,9,10-Tetrahydro-5 $\beta$ ,10 $\beta$ -methano-3a $\alpha$ ,8a $\alpha$ -methylpropenocycloocta[1,2-c:5,6-c']dipyrazole-3,8(2*H*,4*H*)-dione monohydrate

#### D. Djaidi, R. Bishop, D. C. Craig and M. L. Scudder

#### Comment

The structural core of the title compound (I) is the rare tricyclo[5.3.1.1<sup>3,9</sup>]dodecane ring system, the chemistry of which has been described by us earlier (Yue *et al.* 1997, 2000, 2007; Chan *et al.* 2008). Compound (I), Fig. 1, forms hydrogen bonded layers that lie in the (1 - 2 1) plane, Fig. 2 & Table 1. There are three motifs, all of which are centrosymmetric, which repeat within the layer. The first of these incorporates pairs of N—H···O=C hydrogen bonds. The second and third alternate along *a*, one comprising cycles of O—H···O=C hydrogen bonds and involving the lattice water molecules, and the other including N—H···O (water) interactions as well. In Etter's notation, the three cycles can be described as  $R_2^2(8)$ ,  $R_4^2(8)$  and  $R_4^4(12)$ , respectively (Etter, 1990).

#### **Experimental**

Racemic 3,7-bis(methoxycarbonyl)-5-methylidenetricyclo[ $5.3.1.1^{3,9}$ ]dodecane-2,8-dione (Yue *et al.*, 1997) (1.00 g, 3.24 mmol) was ground into a fine powder and then a small volume of hydrazine hydrate added. After stirring the mixture for 30 min, the resulting solid was filtered, washed with a small amount of diethyl ether and dried. The creamy material was recrystallized from methanol to give shiny crystals of the dipyrazole product (0.60 g, 68%), m.p. 335–343°C (decomp.). Found: C 61.90, H 6.24, N 20.97; C<sub>15</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>.H<sub>2</sub>O requires C 61.75, H 5.93, N 20.58%. X-ray quality crystals were obtained from a methanol solution of (I).

#### Refinement

Hydrogen atoms attached to C and N were included at calculated positions (C—H, N—H = 1.0 Å). The water hydrogen atoms were located on a difference map, and then positioned with O—H = 1.0 Å. All hydrogen atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded. A small number of reflections were omitted from the refinement due to rounding differences between the data processing and refinement programs.

#### **Figures**



Fig. 1. Molecular structure of (I) showing atom numbering scheme and dispacement ellipsoids drawn at the 30% probability level.



Fig. 2. Part of one hydrogen bonded layer in the crystal structure of (I) showing the three hydrogen bonded packing motifs. Enantiomers are distinguished by C shading and hydrogen bonds are shown as dashed bonds.

**(I)** 

| Crystal data                    |
|---------------------------------|
| $C_{15}H_{16}N_4O_2 \cdot H_2O$ |
| $M_r = 302.3$                   |
| Triclinic, $P\overline{1}$      |
| Hall symbol: -P 1               |
| <i>a</i> = 6.478 (1) Å          |
| <i>b</i> = 8.157 (1) Å          |
| c = 14.812 (2) Å                |
| $\alpha = 85.412 \ (9)^{\circ}$ |
| $\beta = 88.369 \ (8)^{\circ}$  |
| γ = 67.089 (11)°                |
| $V = 718.6 (2) \text{ Å}^3$     |

#### Data collection

| Enraf–Nonius CAD-4<br>diffractometer   | $h = -7 \rightarrow 7$ |
|----------------------------------------|------------------------|
| $\omega$ –2 $\theta$ scans             | $k = -9 \rightarrow 9$ |
| Absorption correction: none            | $l = 0 \rightarrow 18$ |
| 2695 measured reflections              | 1 standard reflections |
| 2695 independent reflections           | every 30 min           |
| 2365 reflections with $I > 2\sigma(I)$ | intensity decay: none  |
| $\theta_{max} = 70^{\circ}$            |                        |

#### Refinement

| Refinement on F                 | H-atom parameters not refined                              |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.045$ | $w = 1/[\sigma^2(F) + 0.0004F^2]$                          |
| $wR(F^2) = 0.089$               | $(\Delta/\sigma)_{\rm max} = 0.003$                        |
| S = 1.64                        | $\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$      |
| 2357 reflections                | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |
| 200 parameters                  | Extinction correction: none                                |

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters*  $(\hat{A}^2)$ 

x

у

Z

 $U_{\rm iso}*/U_{\rm eq}$ 

Z = 2  $F_{000} = 320.0$   $D_x = 1.40 \text{ Mg m}^{-3}$ Cu K\alpha radiation  $\lambda = 1.54184 \text{ Å}$ Cell parameters from 10 reflections  $\theta = 20-25^{\circ}$   $\mu = 0.82 \text{ mm}^{-1}$  T = 294 KIrregular, colourless  $0.30 \times 0.25 \times 0.22 \text{ mm}$ 

| 01    | 0.2515 (2)  | 0.7918 (2) | 0.4385 (1)   | 0.0547 (4) |
|-------|-------------|------------|--------------|------------|
| O2    | 0.5206 (3)  | 0.2155 (2) | -0.00820 (9) | 0.0554 (5) |
| N1    | 0.7574 (3)  | 0.6073 (2) | 0.3265 (1)   | 0.0467 (4) |
| N2    | 0.6047 (3)  | 0.7257 (2) | 0.3836(1)    | 0.0444 (4) |
| N3    | 0.3972 (3)  | 0.0850 (2) | 0.2088 (1)   | 0.0454 (4) |
| N4    | 0.4023 (3)  | 0.0817 (2) | 0.1133 (1)   | 0.0450 (4) |
| C1    | 0.7515 (3)  | 0.2116 (3) | 0.3103 (1)   | 0.0473 (5) |
| C2    | 0.7756 (3)  | 0.3578 (3) | 0.2444 (1)   | 0.0423 (5) |
| C3    | 0.6519 (3)  | 0.5264 (2) | 0.2887 (1)   | 0.0357 (4) |
| C4    | 0.4109 (3)  | 0.5822 (2) | 0.3178 (1)   | 0.0327 (4) |
| C5    | 0.3650 (3)  | 0.4204 (2) | 0.3612 (1)   | 0.0389 (4) |
| C6    | 0.5016 (3)  | 0.2421 (2) | 0.3198 (1)   | 0.0398 (4) |
| C7    | 0.4370 (3)  | 0.2210 (2) | 0.2270 (1)   | 0.0355 (4) |
| C8    | 0.4732 (3)  | 0.3268 (2) | 0.1447 (1)   | 0.0344 (4) |
| С9    | 0.6971 (3)  | 0.3513 (3) | 0.1481 (1)   | 0.0420 (5) |
| C10   | 0.2364 (3)  | 0.7009 (2) | 0.2481 (1)   | 0.0407 (5) |
| C11   | 0.1748 (3)  | 0.6505 (2) | 0.1653 (1)   | 0.0399 (4) |
| C12   | 0.2665 (3)  | 0.4969 (2) | 0.1200 (1)   | 0.0414 (5) |
| C13   | -0.0245 (4) | 0.7972 (3) | 0.1192 (2)   | 0.0680(7)  |
| C14   | 0.4063 (3)  | 0.7116 (2) | 0.3883 (1)   | 0.0379 (4) |
| C15   | 0.4741 (3)  | 0.2025 (2) | 0.0724 (1)   | 0.0386 (4) |
| OW    | 0.1914 (3)  | 1.1247 (2) | 0.5054 (1)   | 0.0586 (5) |
| HN2   | 0.6410      | 0.8123     | 0.4175       | 0.044      |
| HN4   | 0.3574      | -0.0013    | 0.0801       | 0.045      |
| H1C1  | 0.8130      | 0.2158     | 0.3709       | 0.047      |
| H2C1  | 0.8364      | 0.0923     | 0.2867       | 0.047      |
| HC2   | 0.9377      | 0.3389     | 0.2415       | 0.042      |
| H1C5  | 0.2021      | 0.4462     | 0.3535       | 0.039      |
| H2C5  | 0.4019      | 0.4063     | 0.4272       | 0.039      |
| HC6   | 0.4903      | 0.1431     | 0.3614       | 0.040      |
| H1C9  | 0.6792      | 0.4657     | 0.1126       | 0.042      |
| H2C9  | 0.8150      | 0.2493     | 0.1194       | 0.042      |
| H1C10 | 0.2861      | 0.8001     | 0.2289       | 0.041      |
| H2C10 | 0.0935      | 0.7491     | 0.2830       | 0.041      |
| HC12  | 0.1872      | 0.4965     | 0.0631       | 0.041      |
| H1C13 | -0.0602     | 0.7554     | 0.0622       | 0.068      |
| H2C13 | -0.1567     | 0.8285     | 0.1606       | 0.068      |
| H3C13 | 0.0115      | 0.9048     | 0.1042       | 0.068      |
| H1OW  | 0.2311      | 1.0064     | 0.4799       | 0.059      |
| H2OW  | 0.0335      | 1.1680     | 0.5279       | 0.059      |
|       |             |            |              |            |

### Atomic displacement parameters $(Å^2)$

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|------------|------------|------------|-------------|------------|-------------|
| 01 | 0.0468 (8) | 0.0597 (9) | 0.0644 (9) | -0.0226 (7) | 0.0129 (7) | -0.0380 (7) |
| O2 | 0.086(1)   | 0.0521 (8) | 0.0354 (7) | -0.0325 (8) | 0.0048 (7) | -0.0159 (6) |
| N1 | 0.0379 (8) | 0.057(1)   | 0.052 (1)  | -0.0223 (7) | 0.0050 (7) | -0.0231 (8) |
| N2 | 0.0428 (9) | 0.0485 (9) | 0.0496 (9) | -0.0229 (7) | 0.0022 (7) | -0.0214 (7) |

| N3  | 0.058 (1)  | 0.0384 (8) | 0.0434 (9) | -0.0206 (7) | 0.0035 (7)  | -0.0110 (6) |
|-----|------------|------------|------------|-------------|-------------|-------------|
| N4  | 0.059(1)   | 0.0396 (8) | 0.0417 (9) | -0.0229 (7) | 0.0003 (7)  | -0.0146 (6) |
| C1  | 0.043 (1)  | 0.038 (1)  | 0.047 (1)  | 0.0006 (8)  | -0.0128 (8) | -0.0096 (8) |
| C2  | 0.0272 (8) | 0.049(1)   | 0.048 (1)  | -0.0082 (7) | 0.0010 (7)  | -0.0206 (8) |
| C3  | 0.0312 (8) | 0.0399 (9) | 0.0380 (9) | -0.0143 (7) | 0.0002 (7)  | -0.0114 (7) |
| C4  | 0.0288 (8) | 0.0329 (8) | 0.0362 (9) | -0.0098 (6) | 0.0000 (6)  | -0.0135 (7) |
| C5  | 0.046 (1)  | 0.0374 (9) | 0.0350 (9) | -0.0174 (8) | 0.0046 (7)  | -0.0101 (7) |
| C6  | 0.052 (1)  | 0.0319 (9) | 0.0327 (9) | -0.0129 (8) | -0.0029 (7) | -0.0040 (6) |
| C7  | 0.0396 (9) | 0.0294 (8) | 0.0360 (9) | -0.0108 (7) | 0.0010 (7)  | -0.0073 (6) |
| C8  | 0.0405 (9) | 0.0307 (8) | 0.0312 (8) | -0.0116 (7) | -0.0004 (6) | -0.0090 (6) |
| C9  | 0.041 (1)  | 0.046 (1)  | 0.041 (1)  | -0.0179 (8) | 0.0087 (7)  | -0.0176 (7) |
| C10 | 0.0388 (9) | 0.0309 (9) | 0.049(1)   | -0.0086 (7) | -0.0059 (8) | -0.0092 (7) |
| C11 | 0.0380 (9) | 0.0348 (9) | 0.0404 (9) | -0.0071 (7) | -0.0043 (7) | -0.0018 (7) |
| C12 | 0.047 (1)  | 0.0337 (9) | 0.0417 (9) | -0.0115 (8) | -0.0104 (8) | -0.0063 (7) |
| C13 | 0.063 (1)  | 0.051 (1)  | 0.065 (2)  | 0.007 (1)   | -0.023 (1)  | -0.012(1)   |
| C14 | 0.0400 (9) | 0.0360 (9) | 0.0396 (9) | -0.0146 (7) | -0.0001 (7) | -0.0148 (7) |
| C15 | 0.046 (1)  | 0.0344 (9) | 0.0350 (9) | -0.0133 (7) | -0.0017 (7) | -0.0107 (7) |
| OW  | 0.0515 (8) | 0.062 (1)  | 0.074 (1)  | -0.0306 (7) | 0.0046 (7)  | -0.0305 (8) |
|     |            |            |            |             |             |             |

Geometric parameters (Å, °)

| O1—C14     | 1.229 (2) | C5—H1C5   | 1.000     |
|------------|-----------|-----------|-----------|
| O2—C15     | 1.229 (2) | C5—H2C5   | 1.000     |
| N1—N2      | 1.402 (2) | C6—C7     | 1.491 (2) |
| N1—C3      | 1.284 (2) | С6—НС6    | 1.000     |
| N2-C14     | 1.333 (2) | C7—C8     | 1.503 (2) |
| N2—HN2     | 1.000     | C8—C9     | 1.542 (2) |
| N3—N4      | 1.415 (2) | C8—C12    | 1.534 (2) |
| N3—C7      | 1.283 (2) | C8—C15    | 1.531 (2) |
| N4—C15     | 1.342 (3) | C9—H1C9   | 1.000     |
| N4—HN4     | 1.000     | C9—H2C9   | 1.000     |
| C1—C2      | 1.533 (3) | C10—C11   | 1.438 (3) |
| C1—C6      | 1.543 (3) | C10—H1C10 | 1.000     |
| C1—H1C1    | 1.000     | C10—H2C10 | 1.000     |
| C1—H2C1    | 1.000     | C11—C12   | 1.380 (3) |
| С2—С3      | 1.490 (2) | C11—C13   | 1.510(3)  |
| С2—С9      | 1.540 (3) | C12—HC12  | 1.000     |
| С2—НС2     | 1.000     | C13—H1C13 | 1.000     |
| C3—C4      | 1.507 (2) | C13—H2C13 | 1.000     |
| C4—C5      | 1.550 (2) | C13—H3C13 | 1.000     |
| C4—C10     | 1.528 (2) | OW—H1OW   | 1.000     |
| C4—C14     | 1.535 (2) | OW—H2OW   | 1.000     |
| C5—C6      | 1.543 (2) |           |           |
| N2—N1—C3   | 107.0 (1) | N3—C7—C6  | 121.8 (2) |
| N1-N2-C14  | 113.5 (1) | N3—C7—C8  | 113.9 (2) |
| N1—N2—HN2  | 123.2     | C6—C7—C8  | 122.4 (2) |
| C14—N2—HN2 | 123.2     | С7—С8—С9  | 112.6 (1) |
| N4—N3—C7   | 106.9 (2) | C7—C8—C12 | 112.7 (2) |
| N3—N4—C15  | 112.4 (1) | C7—C8—C15 | 99.0 (1)  |
|            |           |           |           |

| N3—N4—HN4     | 123.8      | C9—C8—C12        | 115.6 (2)  |
|---------------|------------|------------------|------------|
| C15—N4—HN4    | 123.8      | C9—C8—C15        | 112.0(1)   |
| C2—C1—C6      | 109.5 (1)  | C12—C8—C15       | 103.3 (1)  |
| C2-C1-H1C1    | 109.5      | C2—C9—C8         | 114.2 (2)  |
| C2-C1-H2C1    | 109.5      | C2—C9—H1C9       | 108.3      |
| C6-C1-H1C1    | 109.5      | С2—С9—Н2С9       | 108.3      |
| C6—C1—H2C1    | 109.5      | C8—C9—H1C9       | 108.3      |
| H1C1—C1—H2C1  | 109.5      | C8—C9—H2C9       | 108.3      |
| C1—C2—C3      | 104.3 (2)  | H1C9—C9—H2C9     | 109.5      |
| C1—C2—C9      | 112.1 (2)  | C4—C10—C11       | 127.5 (2)  |
| C1—C2—HC2     | 108.2      | C4C10H1C10       | 104.8      |
| C3—C2—C9      | 115.7 (2)  | C4C10H2C10       | 104.8      |
| C3—C2—HC2     | 108.2      | C11-C10-H1C10    | 104.8      |
| С9—С2—НС2     | 108.2      | C11-C10-H2C10    | 104.8      |
| N1—C3—C2      | 120.9 (2)  | H1C10-C10-H2C10  | 109.5      |
| N1—C3—C4      | 113.8 (2)  | C10-C11-C12      | 132.2 (2)  |
| C2—C3—C4      | 122.7 (1)  | C10-C11-C13      | 112.7 (2)  |
| C3—C4—C5      | 111.0 (1)  | C12—C11—C13      | 115.1 (2)  |
| C3—C4—C10     | 115.8 (2)  | C8—C12—C11       | 129.0 (2)  |
| C3—C4—C14     | 98.9 (1)   | C8—C12—HC12      | 115.5      |
| C5—C4—C10     | 114.7 (1)  | C11—C12—HC12     | 115.5      |
| C5—C4—C14     | 111.9 (1)  | C11—C13—H1C13    | 109.5      |
| C10-C4-C14    | 103.2 (1)  | C11—C13—H2C13    | 109.5      |
| C4—C5—C6      | 114.4 (1)  | С11—С13—НЗС13    | 109.5      |
| C4—C5—H1C5    | 108.2      | H1C13—C13—H2C13  | 109.5      |
| C4—C5—H2C5    | 108.2      | H1C13—C13—H3C13  | 109.5      |
| C6—C5—H1C5    | 108.2      | H2C13—C13—H3C13  | 109.5      |
| C6—C5—H2C5    | 108.2      | O1—C14—N2        | 125.5 (2)  |
| H1C5—C5—H2C5  | 109.5      | O1—C14—C4        | 128.1 (2)  |
| C1—C6—C5      | 111.6 (2)  | N2-C14-C4        | 106.4 (1)  |
| C1—C6—C7      | 103.6 (2)  | O2—C15—N4        | 126.6 (2)  |
| С1—С6—НС6     | 108.1      | O2—C15—C8        | 127.0 (2)  |
| C5—C6—C7      | 116.9 (1)  | N4—C15—C8        | 106.3 (2)  |
| С5—С6—НС6     | 108.1      | H1OW—OW—H2OW     | 109.5      |
| С7—С6—НС6     | 108.1      |                  |            |
| C3—N1—N2—C14  | 5.0 (2)    | C5-C4-C10-H2C10  | 62.5       |
| C3—N1—N2—HN2  | -175.0     | C14-C4-C10-C11   | 178.2 (2)  |
| N2—N1—C3—C2   | -162.8 (2) | C14-C4-C10-H1C10 | 55.8       |
| N2—N1—C3—C4   | -0.5 (2)   | C14—C4—C10—H2C10 | -59.5      |
| N1—N2—C14—O1  | 174.6 (2)  | C3—C4—C14—O1     | -175.7 (2) |
| N1—N2—C14—C4  | -7.0 (2)   | C3—C4—C14—N2     | 5.9 (2)    |
| HN2-N2-C14-O1 | -5.4       | C5-C4-C14-O1     | -58.8 (3)  |
| HN2-N2-C14-C4 | 173.0      | C5-C4-C14-N2     | 122.8 (2)  |
| C7—N3—N4—C15  | 8.1 (2)    | C10-C4-C14-O1    | 65.0 (2)   |
| C7—N3—N4—HN4  | -171.9     | C10—C4—C14—N2    | -113.4 (2) |
| N4—N3—C7—C6   | -164.3 (2) | C4—C5—C6—C1      | 47.2 (2)   |
| N4—N3—C7—C8   | 0.2 (2)    | C4—C5—C6—C7      | -71.8 (2)  |
| N3—N4—C15—O2  | 170.8 (2)  | С4—С5—С6—НС6     | 166.0      |
| N3—N4—C15—C8  | -12.5 (2)  | H1C5-C5-C6-C1    | 167.9      |

| HN4—N4—C15—O2  | -9.2       | H1C5-C5-C6-C7     | 49.0       |
|----------------|------------|-------------------|------------|
| HN4—N4—C15—C8  | 167.5      | H1C5-C5-C6-HC6    | -73.3      |
| C6—C1—C2—C3    | 62.4 (2)   | H2C5—C5—C6—C1     | -73.5      |
| C6—C1—C2—C9    | -63.5 (2)  | H2C5—C5—C6—C7     | 167.5      |
| C6—C1—C2—HC2   | 177.4      | H2C5—C5—C6—HC6    | 45.3       |
| H1C1—C1—C2—C3  | -57.6      | C1-C6-C7-N3       | 108.8 (2)  |
| H1C1—C1—C2—C9  | 176.5      | C1—C6—C7—C8       | -54.4 (2)  |
| H1C1—C1—C2—HC2 | 57.4       | C5-C6-C7-N3       | -128.1 (2) |
| H2C1—C1—C2—C3  | -177.6     | C5—C6—C7—C8       | 68.8 (2)   |
| H2C1—C1—C2—C9  | 56.5       | HC6-C6-C7-N3      | -5.9       |
| H2C1—C1—C2—HC2 | -62.6      | HC6—C6—C7—C8      | -169.0     |
| C2—C1—C6—C5    | -63.1 (2)  | N3—C7—C8—C9       | -125.5 (2) |
| C2—C1—C6—C7    | 63.5 (2)   | N3—C7—C8—C12      | 101.6 (2)  |
| C2—C1—C6—HC6   | 178.1      | N3—C7—C8—C15      | -7.0 (2)   |
| H1C1—C1—C6—C5  | 56.9       | C6—C7—C8—C9       | 38.9 (2)   |
| H1C1-C1-C6-C7  | -176.5     | C6—C7—C8—C12      | -94.0 (2)  |
| H1C1—C1—C6—HC6 | -61.9      | C6—C7—C8—C15      | 157.4 (2)  |
| H2C1—C1—C6—C5  | 176.9      | C7—C8—C9—C2       | -30.6(2)   |
| H2C1-C1-C6-C7  | -56.5      | С7—С8—С9—Н1С9     | -151.3     |
| H2C1—C1—C6—HC6 | 58.1       | С7—С8—С9—Н2С9     | 90.1       |
| C1—C2—C3—N1    | 105.6 (2)  | C12—C8—C9—C2      | 100.9 (2)  |
| C1—C2—C3—C4    | -55.1 (2)  | C12—C8—C9—H1C9    | -19.8      |
| C9—C2—C3—N1    | -130.8 (2) | C12—C8—C9—H2C9    | -138.4     |
| C9—C2—C3—C4    | 68.4 (2)   | C15—C8—C9—C2      | -141.2 (2) |
| HC2-C2-C3-N1   | -9.4       | C15—C8—C9—H1C9    | 98.2       |
| HC2-C2-C3-C4   | -170.1     | C15—C8—C9—H2C9    | -20.5      |
| C1—C2—C9—C8    | 45.0 (2)   | C7—C8—C12—C11     | 69.6 (3)   |
| C1—C2—C9—H1C9  | 165.7      | C7—C8—C12—HC12    | -110.4     |
| C1—C2—C9—H2C9  | -75.7      | C9—C8—C12—C11     | -61.8 (3)  |
| C3—C2—C9—C8    | -74.4 (2)  | C9—C8—C12—HC12    | 118.2      |
| C3—C2—C9—H1C9  | 46.3       | C15—C8—C12—C11    | 175.5 (2)  |
| C3—C2—C9—H2C9  | 164.9      | C15-C8-C12-HC12   | -4.5       |
| НС2—С2—С9—С8   | 164.1      | C7—C8—C15—O2      | -172.1 (2) |
| HC2-C2-C9-H1C9 | -75.2      | C7—C8—C15—N4      | 11.2 (2)   |
| НС2—С2—С9—Н2С9 | 43.4       | C9—C8—C15—O2      | -53.2 (3)  |
| N1—C3—C4—C5    | -120.9 (2) | C9—C8—C15—N4      | 130.1 (2)  |
| N1—C3—C4—C10   | 106.1 (2)  | C12—C8—C15—O2     | 71.9 (2)   |
| N1-C3-C4-C14   | -3.3 (2)   | C12-C8-C15-N4     | -104.9 (2) |
| C2—C3—C4—C5    | 41.1 (2)   | C4-C10-C11-C12    | -9.2 (3)   |
| C2—C3—C4—C10   | -91.9 (2)  | C4-C10-C11-C13    | 172.8 (2)  |
| C2—C3—C4—C14   | 158.7 (2)  | H1C10-C10-C11-C12 | 113.2      |
| C3—C4—C5—C6    | -33.8 (2)  | H1C10-C10-C11-C13 | -64.9      |
| C3—C4—C5—H1C5  | -154.5     | H2C10-C10-C11-C12 | -131.6     |
| C3—C4—C5—H2C5  | 87.0       | H2C10-C10-C11-C13 | 50.4       |
| C10—C4—C5—C6   | 99.7 (2)   | C10—C11—C12—C8    | -0.9 (4)   |
| C10-C4-C5-H1C5 | -21.0      | C10-C11-C12-HC12  | 179.1      |
| C10—C4—C5—H2C5 | -139.5     | C13—C11—C12—C8    | 177.1 (2)  |
| C14—C4—C5—C6   | -143.1 (1) | C13—C11—C12—HC12  | -2.9       |
| C14—C4—C5—H1C5 | 96.1       | C10-C11-C13-H1C13 | -180.0     |

| C14—C4—C5—H2C5  | -22.4     | C10-C11-C13-H2C13 | -60.0  |
|-----------------|-----------|-------------------|--------|
| C3—C4—C10—C11   | 71.3 (2)  | C10-C11-C13-H3C13 | 60.0   |
| C3-C4-C10-H1C10 | -51.0     | C12-C11-C13-H1C13 | 1.6    |
| C3—C4—C10—H2C10 | -166.3    | C12-C11-C13-H2C13 | 121.6  |
| C5—C4—C10—C11   | -59.9 (2) | C12-C11-C13-H3C13 | -118.4 |
| C5-C4-C10-H1C10 | 177.7     |                   |        |

### Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | $D -\!\!\!-\!\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|---------------------------|-------------|-------|--------------|----------------------------------------------------------------------------|
| N2—HN2…OW <sup>i</sup>    | 1.00        | 1.83  | 2.763 (3)    | 154                                                                        |
| N4—HN4···O2 <sup>ii</sup> | 1.00        | 2.00  | 2.858 (2)    | 143                                                                        |
| OW—H1OW…O1                | 1.00        | 1.85  | 2.844 (2)    | 169                                                                        |
| OW—H2OW…O1 <sup>iii</sup> | 1.00        | 1.81  | 2.796 (2)    | 169                                                                        |

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*, -*z*; (iii) -*x*, -*y*+2, -*z*+1.







Fig. 2